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ABSTRACT

In spite of their many advantages, optimization systems often ne-
glect the economic, ethical, moral, social, and political impact they
have on populations and their environments. In this paper we argue
that the frameworks through which the discontents of optimization
systems have been approached so far cover a narrow subset of these
problems by (i) assuming that the system provider has the incen-
tives and means to mitigate the imbalances optimization causes,
(ii) disregarding problems that go beyond discrimination due to
disparate treatment or impact in algorithmic decision making, and
(iii) developing solutions focused on removing algorithmic biases
related to discrimination.

In response we introduce Protective Optimization Technologies: so-
lutions that enable optimization subjects to defend from unwanted
consequences. We provide a framework that formalizes the design
space of POTs and show how it differs from other design paradigms
in the literature. We show how the framework can capture strategies
developed in the wild against real optimization systems, and how it
can be used to design, implement, and evaluate a POT that enables
individuals and collectives to protect themselves from unbalances
in a credit scoring application related to loan allocation.

1 MOTIVATION

We are facing a new type of digital system whose organizing princi-
ple is optimization. These systems became the dominant paradigm,
as software engineering shifted from packaged software and PCs
to services and clouds, enabling distributed architectures that in-
corporate real-time feedback from users [30].

Through this process, digital systems became layers of technolo-
gies, metricized under the authority of objective functions. These
functions drive, among others, the selection of software features,
the orchestration of cloud usage, and the design of user interaction
and growth planning [24]. In contrast to traditional information
systems, which treat the world as a static place to be known and
focus on storage, processing, transport, and organizing information,
optimization systems consider the world as a place to sense and
co-create. They seek maximum extraction of economic value by
optimizing the capture and manipulation of people’s activities and
environments [1, 13].

Optimization systems apply a logic of operational control that
focuses on outcomes rather than the process [46]. While this intro-
duces efficiency and allows systems to scale, they also pose social
risks and harms such as social sorting, mass manipulation, majority
dominance, and minority erasure. In the vocabulary of optimization,
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these systems create substantial externalities that arise due to the
inadequacy of their objective functions to address the world.

Moreover, optimization systems hold great potential to shift
power. The fast pace at which they manipulate users and environ-
ments obscures their effect, making it difficult to devise strategies
to contest them. Optimization also often leads to asymmetrical
concentration of resources in the hands of a few companies which
can collect large scale data and muster the computational power
to process these in the pursuit of financial gain [28, 46]. This cen-
tralizes governance and reconfigures market structures, creating
an imbalance of power that benefits a select portion of society.

Fairness frameworks, we claim, have come to being as a response
to the rise of optimization systems. They aim at solving associated
problems, but often don’t provide an in-depth characterization of
these systems. To address this gap, we take a step back to gain a
better understanding of the problem that fairness intends to re-
spond to. We explore some fundamental shifts in the way digital
systems are engineered to organize the world around us. We find
that the problems that may arise are much greater than algorith-
mic unfairness, and that they cannot simply be solved by diligent
service providers. Instead, they require new mental models and
techniques to reason about strategies to counter them.

Specifically, we introduce Protective Optimization Technologies
(POTs) which enable those affected by optimization systems to
influence, alter, and contest these systems from the outside. We
show how POTs are different from other protective technologies.
We demonstrate the suitability of our framework by showing how
it can encompass existing protection strategies, and how it can be
used to design new POTSs, using credit scoring as a use case. Finally,
we discus the limitations and challenges involved in the design and
deployment of POTs.

2 THE OPTIMIZATION PROBLEM

We call optimization systems those systems that capture and manipu-
late user behavior and environments under the logic of optimization.
That is, systems whose operation relies on an optimization algo-
rithm. For instance, ride sharing applications such as Uber, which
rely on optimization to decide on the pricing of rides; navigation
applications such as Waze, which rely on optimization to propose
best routes; banks, which rely on optimization to decide whether to
grant a loan; and advertising networks, which rely on optimization
to decide what is the best advertisement to show to a user.

In this section, we start with an overview of those aspects and
challenges of optimization system design that result in the com-
mon negative outcomes that usually surface during deployment



—that are typically (dis)regarded as ‘externalities’— and end with an
evaluation of the ability of service providers to mitigate these.

2.1 Externalities of Optimization Systems

We first present an overview of ‘externalities’ of optimization sys-
tem design that result in common negative outcomes, risks and
harms that usually surface during deployment. Externalities refer to
situations when the actions of a group of agents, e.g., consumption,
production and investment decisions, have “significant repercus-
sions on agents outside of the group” [50]. The following are some
of the common externalities intrinsic to optimization systems:

Disregard for non-users and environments. Optimizing the
service for targeted users results in non-users and inhabitants of
environments affected by the system being outside the optimization
model. Traffic and navigation services only take into account their
users and how to move them the fastest through the city, exposing
non-users, i.e., people that do not use the service, to heavier traffic.
Hence, residents of streets that were neither intended nor designed
for heavy or non-local traffic experience externalities [33].

Disregard for certain users. Many optimization systems provide
the most benefit to a subset of “high-value” users or to a particu-
lar population segment that does not match their complete user
base. For instance, in the popular augmented reality mobile game
Pokémon Go the placement of Pokémon and in-game resource
stations rely on real world locations and maps, heavily benefiting
players in urban areas and leaving players in rural areas and black
neighborhoods starved of rarer Pokémon and resources [27, 54].

Externalization of exploration risks to users and environ-
ments. Optimization systems benefit from experimentation to re-
duce risks associated with environmental unknowns. Common
practices in software engineering such as trialling new features
through A/B testing involve experimentation on users. However,
exploration often means that risks stemming from unknowns are
pushed to users and their surroundings [5], a problem exacerbated
by the trend of frequent system updates and real time optimization.

Distributional shift. Optimization systems built on data from
a particular area or “domain” may underperform or downright
flounder when deployed in a different environment [51], e.g., a
voice recognition algorithm that is only trained on men’s voices
fails to recognize women’s voices [35, 47].

Unfair distribution of errors. As with distributional shift, this re-
sults in disproportionate allocation of errors to a minority group [26].
Here the cause is that optimization algorithms learn to maximize
success by favoring the most likely option, i.e., they can misclassify
minorities while maintaining high accuracy. Therefore, minorities
underrepresented in training do not perform well under deploy-
ment. For example, facial recognition algorithms are known to
misclassify faces of black women because of this issue [7].

Promotion of unintended actions to fulfill intended outcomes.
Systems may find shortcuts to their optimization goals, also known
as “reward hacking” [2], e.g., an autonomous vehicle recklessly
tailing an ambulance to decrease travel time, or electricity grid
manager choosing to cause a blackout in order to save energy [49].

Mass data collection. Optimization systems need massive amounts
of data to function. The concentration of resources and power in

data holders enables more accurate inferences about populations
and individuals using the data. However, it puts the privacy of the
individuals whose data is input to the optimization at risk, as it can
be leaked through interactions with the system [55].

2.2 Solutions by Design?

Typically the experts argue that risks and harms of optimization
systems arise because system providers (OSPs) “choose ‘wrong’ ob-
Jjective functions” or “lack sufficient good-quality data”, i.e., flaws
and mistakes that amount to poor design [2]. A common response is
therefore to devise countermeasures that allow OSPs to prevent or
minimize the occurrence of these flaws’ [2], with the underlying
assumption that, given adequate tools and means, OSPs will strive
to fix’ or ‘correct’ their systems. While developing methods that
can improve design of optimization systems is absolutely necessary,
for a variety of reasons, they may not always work.

First, assuming that the risks and harms optimization systems
cause are accidents derived from poor design choices dismisses the
possibility that those design choices may in fact be intentional, i.e.,
that the objective functions underlying optimization systems may
actively aspire for asocial or negative environmental outcomes. OSPs
may lack incentives to maximize society’s welfare as opposed to
their own benefit. For example, Uber aggressively optimizes users’
fares to maximize the company’s profit at the expense of meager
earnings for its drivers [37]. Similarly, Waze prioritizes, above all
else, route optimization for its users, thus it lacks incentives to
modify the system so as to avoid troubling inhabitants of residential
neighborhoods that do not use the application [20].

Second, even when OSPs have incentives to address the problems
optimization causes, they may not be in a position or even be able
to do so, e.g., they may lack knowledge about the needs of those
affected by optimization. These may result from cost minimization
strategies that compel them to relinquish feedback from the popula-
tion subject to optimization, or the affected community may simply
be negligible for their bottom line. OSPs may strive to collect the
necessary data to mend optimization outcomes, yet such data may
simply not be available for capture, e.g., in the case of Waze, the
service provider cannot possibly aim to have real-time access to all
the people affected by its navigation optimization, let alone their
wishes and constraints. Ultimately, in practice, data often represents
“what is easy to capture” and thus provides a biased account of the
people and environments it supposedly measures, leaving out key
nuances required to better optimization [23].

These assumptions about the ability of the OSP to affect change
thus limit their ability to address the harms and risks that stem
from optimization systems. Ideally, under such conditions, service
providers should internalize harms and risks, e.g., through stringent
design practices, regulation and taxation, and provide democratic
forms of governance. However, as long as this is not the case, we
can consider OSPs as potentially unable, lacking incentives or un-
willing to address the externalities of their optimization systems,
rather than considering these as the result of poor design choices
or accidents.

As a result, we need new mental models and techniques that
enable designers to reason about strategies that not only counter
the negative effects of optimization from within the system, but also



from outside of the system. Furthermore, we need to capture the
fact that we may consider optimization functions that are different
from those embedded in the original optimization algorithms, to
the extent that it may consider variables and contour conditions
not even present in the original optimization system.

3 PROTECTIVE OPTIMIZATION
TECHNOLOGIES

We consider that optimization systems operate on users’ inputs
and interact with the environment in which they are deployed.
The system’s outputs thus affect both users and environments, at
both individual and collective levels. We leave the definition of
environment open so as to cover any object, human, individual
or collective, e.g., non-users that do not directly interact with the
optimization system.

In this context, we introduce POTs—technological solutions that
those outside of the optimization system deploy to protect users and
environments from the negative effects of optimization. POTs build on
the idea that optimization systems infer, induce and shape events
in the real world to fulfill objective functions. POTs analyze how
events (or lack thereof) affect users and environments, then recon-
figure these events to influence system outcomes, e.g., by altering
the optimization constraints or poisoning the system inputs.

We specifically conceive POTs to address the negative externali-
ties of optimization. To this end, POTs take a holistic perspective,
considering the interaction of the algorithm with the rest of the
optimization system and the environment.

For simplicity, in this paper we consider systems relying on a sin-
gle optimization algorithm. However, our definition of optimization
systems does not equate them to a single algorithm. For example, in
addition to the concrete optimization task of providing navigation
routes, Waze as a whole also provides services such as notifying
users of gas prices or coordinating friends for pickups. We however
only consider functionality subject to optimization when designing
POTs.

3.1 APOTs design framework

We propose a framework based on partially observable stochas-
tic games [25] to reason about the design of protective optimiza-
tion technologies. In Section 4 we discuss how this framework
differs from other protective technologies. For illustration purposes,
throughout this section we use the Waze navigation service as a
reference optimization system. In Section 5.1 we instantiate the
framework to design a new POT, and in Section 5.2 we show how it
accommodates existing POTs against other optimization systems.
Table 1 summarizes the framework notation.

Agents and interactions. We consider an optimization system that
relies on an optimization algorithm OPT() to operate. The optimiza-
tion system interacts with a set of agents I = {i} (see Figure 1). The
agents include both users and non-users, and other elements of the
environment in which the optimization system is deployed In Waze,
among others, the set of agents includes application users, non-
users that experience changes in traffic as Waze changes routing,
and the roads and neighborhoods themselves.

We consider that the optimization system and the agents co-exist
in the World. At any point in discrete time ¢, the World is in state

Table 1: Notation

Agent
Action
Optimization algorithm output
s | System’s state
0(t) | Agent acting at time ¢
7(s) | Agent’s action policy
k(s,a) | Optimization algorithm’s output policy
w(s,a) | Observation function
7(s,a,r) | State transition function
OPT(s,a) | Optimization algorithm
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s € S, with S the space of possible states. We consider that a state
contains all information about the status of any entity in the World.
Therefore it contains the optimization system status, which may
include past interactions with users, and the status of the external
agents: users, non-users, and the environment. In Waze, the state is
composed of all the internals of the Waze systems, including models
trained from users’ information used to make routing decisions, as
well as information about non-users and the actual state of roads
and other environmental factors.

Agents perform individual actions a € A;, where A; denotes
the set of possible actions that an agent i can perform. This set
includes interactions of users with the system, as well as actions
by non-users, or actions that change the system’s environment. In
Waze examples of actions could be: for users, looking for routes or
reporting incidents; for non-users, counting cars passing by their
houses; and for the environment, having works on a road.

Naturally, neither agents, nor the optimization system can see
the full World’s state. They can only view the part of the state that
reflects information they have seen, and their internal state. We
model this incomplete vision of the state through the function w(s).
This function provides an agent with the subset of the state s that it
is able to see. For instance, w(s) gives the Waze system the system’s
internal state, i.e., all interactions with users, and its vision of the
environment according to the received reports. To users, w(s) gives
their own record of actions, and their vision of the environment.

To capture that optimization systems consider changes in their
environment to maximize the extraction of value, we consider that
the World’s state evolves every time an agent i performs an action.
We consider that at time ¢ one and only one agent acts, and we
denote her index by 6(t). We note, however, that other cases can
be accommodated, e.g., concurrency of actions can be achieved by
considering that agents are in fact collectives, and the concurrent
action is a joint action of the collective.

We consider that the action an agent i issues given a sequence of
system’s states s; = [s¢,S¢—1,. . .,s1] is governed by a probabilistic
policy mi(s;). In the case of Waze, users requesting a route, or non-
users having an accident, can make the World transition to a new
state that accounts for this information. As an example, the policy
7i(s¢) describes the probability of a user’s next action being ‘report
incident’, or ‘request route’, depending on her state.

In our framework, state transitions are governed by the prob-
abilistic function 7(s¢, az, r¢). This function receives as input the
sequence of system states up to current time ¢ s;, the triggering
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Figure 1: Optimization system interaction model

action a;, and r; € R, the response of the optimization system to
the agent’s action. The space of outputs R depends on the applica-
tion under consideration. In Waze, for instance, a report makes the
World transition to a new state that records the incident.

The optimization algorithm OPT() provides a response according
to a probabilistic policy x(s;, a;) computed to meet an objective
function as discussed below. In the Waze example, the optimization
algorithm is called whenever a user requests navigation suggestions,
and r is a proposed route, where R is formed by all possible routes.

Optimization systems’ benefits. Optimization systems seek to
maximize the economic value from their interactions with users and
environment. We model the immediate benefit that an optimization
system obtains when the World is in state s as a function By(s). In a
slight abuse of notation, we denote the expected benefit of issuing
a reaction r; to an agent’s action a;, ; given a sequence of state
transitions s, as Bo(s¢, aj, ¢, 7). It is computed as the expectation
of the immediate benefit taken over all possible next states:

Bo(sts ai,r, 1) = E[Bo(st+1) | st, @i, 1]
> Bo(s") Prls” | st ai e, 7]
s'eS
D, Bols) Prlr(ss,air.re) = ']
s'eS
We can compute the optimization system’s expected discounted
total benefit Vl.”’K, describing its benefit over n future actions as:

n

VoK (sk) =B | D v Bolst, agge),eo7e) | sk
t=k+1

B Zn: Z Z Bo(sg,a’,r’) - Prlsg,a’, v’ | si),

t=k+1 r'eR s;€S?
aeA
where y € [0,1] is some discount factor. Pr[z(sz, aj ¢, 7") = '] is
the probability that r’ leads the World into state s’, and can be
computed as follows:

Prs;,a’,r" | si] = Pr[r’ | st,a’] Pr[a’ | s¢] Pr[s; | si]
= Pr[k(s¢, a’) = r'] Pr[mg(p)(st) = a'] Pr[s; | sg]

The total benefit enables us to define the optimization objective
of the algorithm OPT (line 1 in Figure 2, left). OPT gets as input the
current state of the World and the current action of an agent, as
well as the models of the World’s transition function 7, agent order
function 0, and the agents’ policies 7. With this information it finds
the policy x* that maximizes its expected total benefit. Afterwards
(line 2), the algorithm uses the found policy k™ to select a reaction
r to be outputted to the World.

OPT(st, ai,z; 7,0, )

k* = argmax V" " (s;)
K

POT(ss; 7, 0, K, iz q)

7" = argmax V00" (sr)
g

Tee1 <SK(St, ai,r) ag r+1 <sme(st)

Figure 2: Optimization system and POTs design strategies.
Both algorithms consider the state, the World’s transition
function, and their counterpart policies to find the best strat-
egy to maximize their benefit. Note that for POT the benefit
is defined over (a subset of) the agent’s population.

Countering optimization systems. Similar to the optimization
system, agents seek to increase their own benefit. We model the
immediate benefit that an agent i obtains when the World is in state
s, as a function B;(s). We denote as B (s, a; ;) the expected benefit
of performing an action a; ; at state s; and compute it as follows:

B (st,ai,t) = E[B(st+1) | 8¢, ai,z]

Z Z Pr[t(ss, az,r’) = 5]

s’eSreR

Analogous to the optimization system, we compute an agent’s
expected discounted total benefit Vi”’K describing her benefit over
future n actions as:

k+n
VI (s) =E| D v B (st,ap(,0) | sk
t=k+1 1)

= zn: Z Z y!B¥(st,a’) Pr[ss,a’ | si]

t=k+la’€As;eSt

where y € [0, 1] is some discount factor. Pr[s;, a’ | s ], that models
the probability of the agent acting at time ¢ to perform action a’
according to her policy 7g(;), can be computed as follows:

Pr[ss, a’ | s] = Prlmgp(st) = a’] Pr[s; | sg]

Note that this computation requires that the agent has a model of
other agents’ actions to estimate the World’s state evolution. Yet,
Vi”"c only considers i’s own benefit, B;.‘.

We also define a population’s benefit function By, as a function
over the immediate benefit of all agents and of the system itself:

Bpop = 0(Bo, {Bi}ier)

Protectors is a group of agents (or a single agent) who wish to modify
the benefit of the whole or a part of the population using a POT.
To build the POT they first select the target users, and the sought
effect on their benefits—by choosing the ¢. This function can be
defined to potentially override, cancel, or boost the benefit of any
agent or the system. In order to affect the population benefit, each
protector d solves an optimization problem to find a policy that
maximizes the population’s expected discounted total benefit sz’p'(.
It is computed analogously to an agent’s expected total benefit
(Eq. 1)—except it’s based on the population benefit Byop, not the
individual benefit B;.

The POT optimization problem is defined in Figure 2 (right). The
first line illustrates how the POT is built, taking as input the state of
the World, the state transition function 7, the agent order function
0, the optimization algorithm’s reaction policy , and the policies of
other agents’ ;4. With this information, protectors find the best



policy 7* to select their actions (line 2) so as to obtain the desired
result for the population.

In the Waze example a protector could build a POT to define
actions on the optimization system that reduce traffic in front of her
house. First, she sets herself as the ‘beneficiary’ (Bpop = By). The
POT optimization problem takes the current state of the roads, a
model of the World’s state transitions, the Waze route optimization
policy —based on users navigation requests and Waze’s belief on
the state of the map,— and a model of other agents’ policies. The
resulting POT optimization problem would find a policy 7* pointing
where protector should report incidents to avoid cars being routed
along her house [31].

We note that the OPT and POT problems are symmetric, and that
they can consider each other’s operation when computing their
best strategy. This means that the proposed design method allows
to capture the fact than the optimization system can deliberately
counter the deployment of POTs. Analogously, since POTs consider
the optimization system’s underlying policy, the POTs can adapt to
strategic changes of the system.

Acting under uncertainty. In reality, it is unlikely that the agents
or the system have perfect knowledge about each other’s policies
or the World’s state. To use the algorithms in Fig. 2, however, they
need to establish models of all the parameters. These can be ad-
hoc approximations, or data-driven models that get refined upon
receiving observations.

Our framework accomodates for the possibility of inference of
unknown parameters. For example, given a probabilistic model
on the received observations w(s), agents can use a maximum a
posteriori estimate for the history of state transitions:

8¢ = arg max Prls; | Wy ;_1,aq 1],
s; €St
where wg ,_; is a sequence of observations [w(s;-1), w(st-1), . . .,
«(s1)]. Similarly, given an initial guess of k or 7, they can refine
their models from the received observations.

4 POTS AND OTHER PROTECTIVE
TECHNOLOGIES

POTs are not the first technologies that aim to protect users from
negative effects arising from the pervasive use of digital systems.
Fairness technologies aim to mitigate unintended discrimination
that arises in the use of machine learning and algorithmic decision
making, privacy technologies aim to protect users’ from surveil-
lance, and security technologies aim to prevent the unauthorized
use of information. Yet, these technologies fundamentally differ
from POTs in their goals, their reasoning, and the inputs they take
into account. We discuss these differences to position POTs among
these protective technologies.

4.1 POTs and Fairness

Some of the negative externalities that POTs tackle relate to the
problems that fairness solutions aim to mitigate. Even though the
goals of each are comparable, we argue that the way in which
fairness frameworks reason about the problems, and their under-
lying assumptions about incentives, limit their ability to address
discontents that POTs attend to.

Research on fairness has eminently focused on decision-making
systems [7, 18, 45]. Such systems typically take data from one indi-
vidual as input and output a decision, based on an algorithm, that
has a direct impact on that individual. For example, recidivism pre-
diction systems take as input the data of a criminal defendant and
predict how likely the individual is to reoffend [44]; fairness tools
act on the algorithm to prevent or minimize inequitable outcomes
for different groups [9, 11]. The use of algorithmic constraints to en-
sure a particular measure of fairness is what we refer to as fairness
frameworks or, more simply, fairness. Over the last years, researchers
have proposed various definitions of fairness [3, 11, 45], and there
is a lack of consensus in what the paradigm encompasses. As such,
we discuss fairness in broad terms and focus on the state-of-the-art.

Using the POTs framework to model the fairness approach, we
observe the following. First, fairness focuses on the algorithm’s
bias, thus staying limited to the analysis of an algorithms’ inputs
and outputs. As a result, the system’s state, s, tends to only con-
tain information about the users of the system. Second, fairness
generally considers that the benefit of an agent is a function of the
output of the algorithm, i.e., Bij(s;) = B;(r;), determining that this
benefit should be equitable across different groups. Finally, fairness
typically assumes that the group of protectors is a single d that has
access to the algorithm, i.e., the optimization system provider itself,
which the POTs framework does not allow for!.

The fairness approach hence adopts a narrower scope with re-
spect to POTs. We now illustrate how that narrowness undermines
fairness’ ability to mitigate the harms optimization systems cause.

Static decision making. Fairness commonly considers decision-
making as static, i.e., the algorithm and its environment are fixed.?
In terms of the POTs framework, fairness assumes that the state of
the world, s, that is fed to OPT does not evolve over time. Hence,
fairness disregards the possibility of state transitions, 7, i.e., agents, i,
feed actions, a, directly to OPT and directly receive the optimization
output, r, that is input to the benefit function, B,, as opposed to
an updated s;4+1. However, under optimization systems, OPT does
change, e.g., predictive policing results in increased crime reporting
for patrolled neighborhoods if the algorithm is not updated to
account for the fact that police visit certain neighborhoods more
often than others [19]. Hence, fairness is ill-equipped to prevent
the negative effects that arise when agents do evolve [32].

Post-deployment apathy. Fairness commonly focuses on the al-
gorithm independent of the environment where it is deployed, thus,
fairness stays limited to analyzing an algorithm’s inputs and out-
puts.

This is reflected in that the state, s, is constrained to the data
space of the inputs and outputs and that the benefit function, B;(r;),
is computed on the algorithm’s output. However, in optimization
systems many externalities occur only after the system is introduced
into an environment. Because the state, s, that fairness considers
does not reflect changes in the environment, fairness is made un-
aware of and cannot account for externalities, e.g., a navigation
application may provide its users with optimal routes in a way

!With an exception of paper by McNamara et. al [36], which includes multiple author-
ities in the decision chain but not the users.

2 A notable exception being a work on fairness in reinforcement learning [29], in which
future changes of environments are considered.



that satisfies a given notion of fairness. Still, fairness cannot rea-
son about the effect that the fair routes have on the environments
that those routes traverse, i.e., traffic may increase in residential
areas. This impact, especially when multiple routing applications
are deployed, becomes evident only after deployment. POTs con-
sider states, sy, encompassing all agents and their environment as
well as their evolution over time (according to 7). Thus POTs can
address post-deployment externalities.

Disregard for non-users. By focusing solely on the algorithm’s
inputs and outputs, fairness limits itself to targeted users. While
this may be due to post-deployment apathy, it may also be that non-
users are simply ignored in spite of the OSP’s awareness of potential
post-deployment effects. The state, s, only includes information
about the system’s users, thus the solutions only consider benefit
functions for them, i.e., B; for agents i that directly interact with
the algorithm. Optimization systems, however, have an impact on
non-users and environments, or propagate externalities through
environments to the people that populate them. For example, in
Pokémon Go, the rural players are at a disadvantage, with fewer
Pokémon and in-game resources. In parallel, non-users who live or
work at popular Pokémon locations may find their environments
flooded by gamers. Fairness solutions could ensure that rural and
urban players’ experience becomes more similar, but, as they are
neither considering B;(s) for non-user agents i, nor include their
data in the state s, they cannot be used to improve the situation for
neighborhoods invaded by Pokémon players.

Blindness to allocation of resources. Fairness aims to ensure
equitable outcomes across groups, one individual decision at a time,
i.e., the algorithm produces each decision independently for each
agent, although bound by the fairness constraints. While many
optimization systems may indeed only be concerned with individ-
ual decisions, POTs consider the possibility where each individual
decision is subordinate to a measure of optimality over a popula-
tion. Since fairness only considers a state, s, as constituted solely
by the algorithm’s users data and, since this state does not evolve,
it cannot consider interactions between individuals, or even the
environment. Even though optimization systems may operate on
individuals’ inputs and provide individual outputs, they often focus
on how to best distribute resources to a population or environ-
ment. For example, with Uber, each individual sees the outcome
of the system as a single decision: match and price. However, the
optimization system makes decisions about the entire ecosystem,
optimizing the best matching of drivers to riders to reap the highest
profit. The POTs framework captures interactions in the ecosystem
and redistribution of resources by i) not constraining the agents,
nor the state and ii) allowing the state to evolve to consider how
actions from agents may affect future decisions for other agents.
The framework allows both the protectors and the optimization
algorithm OPT to include the effect of future actions, their own and
from others, on the algorithm outputs. This is reflected on Vl.”’ “(st)
taking into account the horizon of actions. Fairness, on the other
hand, is commonly limited to objectives that can only depend on
the pre-deployment state of the system.

Decontextualization. The decontextualization of fairness inher-
ently implies that it accepts the adequacy of the algorithm under
study and rarely questions its utility [17]. Thus, fairness solutions

mostly aim to ensure that different subgroups in the population are
equally affected by the algorithm, only considering benefit func-
tions, B;, that are aligned with the goal of the algorithm.? In the
context of optimization systems, this means that fairness does not
question whether the objective function itself is just, only ensur-
ing that people are equally subject to such effects. For instance, a
predictive policing application that may be constrained for fairness
but does not take into account the negative effects that predic-
tive policing has on vulnerable populations —or a credit scoring
algorithm that may be tuned to ensure that sub-prime loans are
fairly distributed— are likely to lead to unjust outcomes. On the
contrary, B; in POTs design are not constrained. Hence, they enable
the designer to consider alternative impacts arising from the goal
of the optimization itself. Further decontextualization can occur
when fairness work relies solely on legal conceptions of protected
identities and fairness. One form of re-contextualization is to work
with researchers, activists and community movements with inter-
sectional aims in order to center affected communities, something
that POTs are designed to do.

The intersection. Finally, we note that even though fairness and
POTs design approaches differ in fundamental ways, as enumer-
ated above, there exist fairness solutions that could be cast as POTs.
These are de-biasing approaches that can be applied after the al-
gorithm has been deployed, by agents external to the system. A
paradigmatic example of such technology is Bolukbasi et al. pro-
posal to de-bias word embeddings [6]. Their solution can be used to
remove gender stereotypes, e.g., association of the words reception-
ist and female, after the embeddings have been computed, without
destroying the utility of the associations they capture.

4.2 POTs and Security and Privacy

Security technologies are designed to protect systems’ data confi-
dentiality and integrity, and guarantee availability in the presence
of adversaries. As such, they work within a system to ensure that it
is operating as intended. Therefore, security technologies present
similar limitations to fairness solutions when it comes to casting
them as POTs.

Privacy enhancing technologies (PETs) are concerned with the
collection and processing of data by systems (or individuals). They
may be implemented by the system provider to limit the amount
of data the optimization system collects from agents, or exposes to
adversaries, e.g., using privacy-preserving cryptography to perform
computation. In this case PETs are similar to fairness, i.e., they
constrain the functionality of the system depending on privacy
requirements much in the same way as fairness constrains decision
making depending on a particular metric of fairness.

System users and non-users may also rely on PETs, e.g., obfus-
cation or encryption, to limit the amount of data an optimization
system collects about them. In these scenarios PETs can overlap
with POTs as they enable agents external to an optimization system
to protect themselves against the system’s negative outcomes.

For example, a PET may feed misinformation, or no information,
to an optimization system to hinder its operation. Consider targeted
advertising, where ad networks collect data about users such as

3With the exception of a work by Corbett-Davies et al. [12] in which an impact on
utility in the form of a measure of public safety is considered.



demographics, location, site visits, and ad clicks. Every time a user
with a particular profile performs the action a = ‘visit website’ the
ad network uses an optimization algorithm, OPT, to select the ad
that has the highest click chance. A PET such as Tor [52] hides
metadata that advertisers may use to identify individuals browsing
the web, therefore preventing ad networks from profiling users.
Another PET, AdNauseam [14] automatically clicks on every ad on
every page a user visits so that ad networks obtain a polluted profile
of the user that no longer represents their interests. Both PETs
effectively undermine OPT’s functionality; Tor exploits anonymity
to thwart OPT, whereas AdNauseam exploits obfuscation.
Furthemore, PETs are often designed to protect individual agents
and, as fairness, rarely consider non-users or the environment of
the system. That means that they may not be suited to consider
population benefits, i.e., they may only consider the case Bpop = B;.
Finally, both security and privacy technologies consider an ad-
versary that intentionally tries to harm the system and its users.
POTs, on the other hand, target optimization systems whose nega-
tive externalities are not necessarily premeditated. Still, the POTs
design framework we propose in Section 3.1 accommodates ad-
versarial optimization algorithms that, e.g., consider counteracting
POTs as part of their benefit function B,, and strategic optimization
systems that take into account the deployment of POTs by virtue
of including the agents’ policy 7 in OPT’s operation (see Figure 2).

5 POTS INSTANCES

Next, we present an example of how to design a POT using the
framework and discuss how the framework can model further strate-
gies currently deployed against optimization systems.

5.1 Case study: credit scoring

We examine the viability of designing POTs to counteract a service
provider that uses ML for credit scoring. By credit scoring we refer
to the process that a bank undertakes to evaluate the risk of a par-
ticular loan application and decide as whether to accept or reject
the application. Credit scoring systems are inherently designed
to minimize the banks’ risks and maximize their profit. The un-
derlying algorithms that support these decisions can discriminate
applicants on protected attributes like gender or ethnicity [10], or
cause feedback loops for populations disadvantaged by the financial
system [46]. These harms are often caused by capturing values that
are a product of unjust realities as inputs, and then propagating
these to the model’s decisions. We aim to design POTs that help
break out of such feedback loops and correct unjust decisions.

To design the POT, we rely on techniques from adversarial ma-
chine learning [34]. Unlike classical adversarial ML, however, the
roles of the adversary and defender are reversed, i.e., the model
deployer is the POTs’ “adversary”.

Setup. We simulate a bank (the OSP) and its clients (the agents), us-
ing the German credit risk dataset from the UCI Machine Learning
Repository [16]. This dataset contains 1000 feature vectors repre-
senting loan applicants, where features include job type, housing
type, amount of funds in the bank accounts, gender, etc., and the
loan details: loan amount, duration, and purpose. Each example
has a binary label encoding whether the loan was repaid (70% of
examples) or not (30% of example).

We simulate the OSP as follows. First, following a common prac-
tice, we quantize all the continuous features into 5 quantiles. Then,
the categorical and quantized features are one-hot encoded. We
obtain 38-dimensional binary feature vectors. We split the dataset
into 900 train examples and 100 test examples. We then train an
SVM with an RBF kernel model to predict if applicants will default
on the loan, choosing hyperparameters using 5-fold stratified cross-
validation on the training dataset. If the model predicts ‘default’
for a given loan application, the OSP denies it, otherwise accepts
it. This classifier achieves 77% accuracy on the test dataset (90%
precision, 80% recall).

For this proof of concept we assume that protectors have perfect
knowledge of the system workings: the ML model parameters and
the actions of other agents. In reality they would need to estimate
these parameters (see Section 3.1). Since this POT implements an
adversarial machine learning attack, protectors can use model in-
version [55] and take advantage of transferability of adversarial
examples across different models [42].

The protectors aim to change the loan decisions to maximize
different instantiations of population benefit functions, by changing
loan applications. We assume that they cannot change any of the
features that represent information about the individual, only the
loan details: duration, amount, loan purpose. These features are
arguably easy to modify in reality by changing the loan application
form. For a given initial example x, we define its transformations
as the feature vectors that change one of the following: 1) the loan
amount bin, 2) the loan duration, 3) the loan purpose category.

Formalization. The OSP operates a supervised ML model. We
denote by D a space of labeled examples x,y € D, where x € X
represents an individual and its loan details, and the label y €
{0, 1} whether the individual defaulted on the loan or not. A model
k : X — {0,1} maps an example x € X to an estimated binary
label § € {0, 1}. The model takes as input a loan application and
information about the applicant, and outputs a prediction that is
interpreted as the the OSP’s decision: deny if ‘default’ is predicted,
accept otherwise.

An agent can perform two kinds of actions. First, apply for a
loan. Second, after applying and getting accepted, she can repay the
loan. Hence, the action space A = {‘apply’, ‘repay’} X X. The space
X consists of all transformations of some initial loan application x.

The system’s state at time ¢, s;, consists of a training dataset
Dt € D, and the previous loan decision. When the action ay is
‘apply’, the reaction r = § of the optimization algorithm OPT(s;, a;)
is a decision. If the action is ‘repay’, however, the corresponding
x is added to the training dataset Dy, with a ‘repayed’ label, effec-
tively updating the model, and OPT returns the updated Dj,. For
simplicity, we assume that the model is retrained using the current
dataset every time an ‘apply’ action is performed Dy, even though
in practice the model is retrained at each state update.

Protectors’ goal—-maximizing own benefit. In this scenario a
protector has as goal to get her loan application to flip from deny to
accept. She uses evasion attacks (also known as adversarial exam-
ples) [34, 53]. to modify her application form to obtain an ‘accept’ de-
cision for the maximum loan amount. The Bg (st,ar = (apply’, x”))
is hence equal to the loan amount if it gets accepted, and 0 oth-
erwise. Denoting as R(x”) the loan amount encoded in a feature



vector x’, the optimization problem that a protector d solves is:

x* = arg max XEX R(x")Pr[n(x) = x’]

s.t. x (s¢, (‘apply’, x”)) = ‘accept’

which maximizes a degenerate case of V;’K, where only one step
in the future is considered, and the protector only considers their
own benefit as a component of the population benefit: Bpop = Bg.
Results. Our method is able to find loan applications that would be
accepted for all users for whom the system denied the loan. We
show in Figure 3 (left) a boxplot representing the distribution of
the maximum increase in the loan amount for all users (the circles
indicate how many individuals obtained that increase) depending
on the number of manipulated features. The number of changed
features reflects the cost of a transformation for the protector. Un-
surprisingly, changing more features in the application enables
larger increases in the loan amount. We note that a protector could
change her benefit function to find a better trade-off between cost
and profit for herself.

Protectors’ goal—maximizing the benefit of others. In this sce-
nario a group of protectors aim at ensuring that certain applicants,
called target group G, have higher chances to obtain an ‘accept’ loan
decision in the future. To this end they poison the training dataset
of the model [4], i.e., apply and repay loans to trigger retraining
operations. This strategy thus, imposes a significant burden on
protectors, but we consider it realistic, e.g., the practice of taking
out loans to improve one’s own credit score is not uncommon in
the United States [22, 40].

Let us assume that the benefit B;(s) of individuals in the target
group G is equal to 1 if their loan is accepted, and 0 otherwise. Then,
the population benefit that the protectors aim to maximize is the
acceptance rate within the target group:

Bpop(s) = é Z Bi(s)
i€eG
This is used by each protector to solve the POT optimization prob-
lem and obtain, a policy 7* defining actions that maximize Vp%’p'c
over multiple steps, where 0 is such that first all protectors act (i.e.,
poison the dataset), and afterwards, all agents from the target group
act to get their loans.

For our experiments, we picked a target group of 22 loan appli-
cations made by individuals who have ‘little’ funds in both their
checking and savings account, that would have repaid their loan
application in reality, but were denied by the model. We approx-
imate the policy n* using a greedy probabilistic algorithm. We
assemble the set of poisoning examples by randomly sampling an
initial x from the dataset minus the target group, and adding its
transformation x” to the set if 1) x” would get an ‘accept’ decision
from the original model, and, 2) the acceptance rate for the target
group by a model retrained on x” increases. We run the algorithm
10 times with different randomization seeds for sampling. To keep
our simulation time reasonable we chose the best individuals to act
as protectors and the best possible loan applications that maximize
the objective. We note, however, that other groups could achieve
such an objective, albeit at a higher computational cost to find the
appropriate groups.

Evasion effect Poisoning effect across groups

rS
=3

EN

Group
—— Target
Everyone else

L L

L

w
w
=3

N
=3

-

o
o

o
o

Max amount increase (bins)
N
Change in accept rates (pp)

1 2

3 0 1 2 3 4 5
Number of modified features

Number of poisoned applications

Figure 3: POTs simulation results

Results. Using the probabilistic algorithm, we are able to signif-
icantly improve the target population benefit Bpop(s) in all sim-
ulations. Fig. 3 (right) shows the increase in the acceptance rate
for the target group, and for others, depending on the number
of protectors. A group of 5 protectors (about 0.5% of a poisoned
dataset, initially containing 900 examples), is able to increase the
target group’s acceptance rate from 0% up to about 30%. As a side
effect, the poisoning also slightly increases the acceptance rate for
everyone else.

5.2 POTs in the Wild

In recent years, people have developed several strategies to counter
the negative effects of optimization systems. Below we describe
three such strategies and show how to formulate them as POTs.

Induced Uber surges. Uber manipulates prices in space and time,
constituting geographies around supply and demand that both dri-
vers and riders are unable to control, negatively impacting both
with price falls and surges. In particular, Uber pushes prices up to
respond to the scarcity of drivers, which drivers have collectively
exploited by simultaneously turning off the Uber app on their de-
vices to induce a price surge, then turning the app back on after a
certain amount of time to take advantage of the surge [38].

In terms of a POT, drivers and riders are agents which perform
the actions turn ‘on’/‘off” app and ‘request ride’, respectively. Re-
sponses r from Uber include the ride prices that OPT outputs as well
as driver addition and removal. Protector drivers observe that prices
depend on the number of drivers and riders recorded in the World’s
state, thus design a POT with a policy 7* to determine the number
of absences that increases their group benefit, Bpop, by getting the
OPT to output ‘surge’. Then, following policy 7*, each protector
performs action a = ‘off’, causing Uber’s response to trigger a
transition in the World’s state whereby OPT outputs ‘surge’.

Pokémon Go spawn encouragement. Pokémon Go users in ru-
ral areas enjoy fewer of the game’s perks than those in more urban
or even suburban areas: less Pokémon, less Pokéstops to collect
resources, and less gyms to compete in. One obvious strategy to
correct this imbalance is for users in rural areas to spoof their
phone location to an urban area. A more elaborate strategy ex-
ploits the fact that Pokémon Go decides spawn points based on
OpenStreetMaps? location information by reporting either false or
previously unreported footpaths, swimming pools, or parks, all of
which encourage new Pokémon to spawn [21].

4www.openstreetmap.org
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In terms of POTs, players are agents whose actions are edits
to OpenStreetMap and searches for Pokémon. The World’s state
depends, in part, on OpenStreetMap. The optimization system’s
reactions include r = ‘add new Pokémon in a location’. A protector d
designs a POT with a policy ™ that determines how Pokémon Go’s
OPT algorithm uses OpenStreetMap to spawn Pokémon, and then
strategically chooses where and what to add on OpenStreetMap to
increase her benefit B; by triggering the desired spawns.

AdNauseam. Ad networks collect information on Internet users’
browsing history and behavior to optimize ad placement, a practice
that may lead to biased advertising [15]. AdNauseam® seeks to pre-
vent this kind of negative optimization by blocking ads from view
while clicking on each of the blocked ads, poisoning ad networks’
user profiles to render them useless.

As a POT, AdNauseam users are agents that perform actions
‘visit page’ and ‘click on ad’. The World’s state encodes the agents’
profiles the ad network builds. A protector d designs a POT with
policy 7* to maximize the benefit B;, defined as rendering the
information the ad network collects useless. Then, according to 7%,
AdNauseam clicks on every ad it sees.

6 DISCUSSION

Deployment challenges. That POTs work from outside the op-
timization system poses several challenges to their deployment.
Firstly, the cost of POT design and deployment may be too high.
The POT against credit scoring we study in Section 5.1 requires pro-
tectors to take loans, proving financially infeasible for many people,
undermining collective action that requires coordination among a
group of people. In fact, POTs that require collective action may
be especially elusive, as they call for organization, communication,
and mass participation of protectors (e.g., inducing Uber surges
requires many drivers) which may not always be possible. OSPs
may also try to actively inhibit or block POTs (e.g., Waze banning
accounts reporting false traffic incidents), prompting protectors to
engage in an arms race that further increases their costs. Such retal-
iation may further disadvantage those users who cannot afford the
risk of being locked out of systems. Moreover, usability issues are
important for POTs design, as POTs need to enable non-expert pro-
tectors to engage with a system without requiring them to master
the underlying technical complexity.

The ethics of POTs. POTs may pollute input data to optimization
systems, raising ethical issues analogous to those of obfuscation-
based privacy technologies [39], which we discuss below.

Dishonesty. Since most optimization systems do not explicitly re-
quest users to provide information but rather sense or infer it —and
often disregard non-users and environments,— the manipulation of
inputs is not necessarily dishonesty, but a way to introduce feedback
into the cybernetic loop so that the system recognizes its externalities.

Waste. POTs may require the investment of significant resources
and thus considered wasteful, especially if they fail to yield mean-
ingful results, or initiate an arms race with the OSP. However, POTs
must be evaluated for their overall effect and the final allocation
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of resources they achieve since they may, at the expense of invest-
ing additional resources, ensure far more equitable outcomes than
those the system originally optimizes for.

Free riding. One may accuse protectors of free-riding whenever
POTs maximize the benefit of one group at the expense of another.
Free-riding is however inherent to optimization systems: Users of
optimization systems may free-ride on non-users, whereas OSPs
may free-ride on everyone. However, this free-riding may be toler-
able taking into account the benefit that POTs bring by enabling
those who bear the costs of optimization to compel OSPs to inter-
nalize the externalities they create.

On the other hand, if people deploy selfish POTs to maximize
their benefit at any cost, the system may transition towards a
tragedy of the commons, i.e., in the absence of a central policy that
regulates allocation of resources, agents may turn to exhausting
all available resources [41]. For instance, in the loan application
example of Section 5.1, enabling agents to improve their chances
of receiving money, and how much, may result in reckless deci-
sions that leads individuals to acquire a debt that they cannot repay.
While their misuse is a risk, POTs also enable agents to contest
optimization systems that promote the very selfish strategies POTs
may fall prey to [8].

Subversion and system damage. Since the goal of optimization sys-
tems is not to obtain knowledge per se but rather to use it to maxi-
mize a benefit function By, they selectively ignoring data deemed
not relevant for the optimization implicitly distorting their vision of
the populations and environments they impact. In this setting, POTs
can be seen as tools to strategically codify information about agents
that optimization systems choose to ignore. Moreover, charges of
subversion and system damage must be measured up against the
subversion and damage the optimization system causes itself. The
blatant deployment of asocial or harmful optimization may justify
agents’ responses based on subversion and sabotage.

More worrying is the fact that by virtue of modifying, subverting,
or sabotaging an optimization system POTs may elicit transitions
in the system state that result on externalities, like those discussed
in Section 2.1 for optimization systems) that a POT cannot possibly
predict or account for. Note that this can be the case even when
POTs are not engaging in the optimization game—e.g., opt to block
or shut down optimization systems. They may still cause ripple
effects in unpredictable and harmful ways.

If several POTs are deployed, and enter in an arms race, those
agents with the most knowledge and resources are likely to deploy
the most aggressive and effective POTs and have the most leverage.
This in turn may undermine the ability of less powerful populations
—who may need POTs the most— to have any impact effect on the
system. This signals that well thought POTs must be built to provide
less powerful actors with the means to respond to the potential
abuse of power by those that have more information.

Finally, the existence of POTs that can address agents concerns
after deployment may incentivize OSPs to deploy systems first, and
address externalities only later, if and only if there is significant
media or policy attention.

Accountability and Transparency. POTs can also overlap ac-
countability and transparency frameworks.
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Accountability. Rubin defines accountability as requiring “the ability
of one actor [... ] to reward or punish [a] second actor on the basis of its
performance or explanation” [43, 48]. POTs promote accountability
by enabling both disenfranchised agents to punish a system that
negatively impacts them. When agents face an unaccountable OSP
that offers no explanation or justification to the negative externali-
ties of optimization, agents may rely on POTs to push back.
Pasquale further argues that “an algorithmic accountability move-
ment worthy of the name must challenge the [balance of power], rather
than content itself to repair the wreckage left in their wake.” [43]. By
enabling those outside the system to reclaim a share of the power
OSPs wield, POTs have the potential to fit within such a movement.

Transparency. To tweak or intervene an optimization system using
a POT one must understand what the system does, e.g., through re-
verse engineering, which in turn necessarily increases transparency.
However, as a response to POTs, OSPs may render their systems
more complex and opaque so that others (e.g., POT designers) can-
not manipulate them. In addition, agents equipped with knowledge
of the optimization system may choose to strategically refashion
themselves to better fit the OSPs’ optimization goals, providing the
opposite outcome to empowerment, as POTs primarily seek to help
users refashion the optimization system, but not themselves.

7 OUTLOOK

In this paper we identify negative externalities intrinsic to opti-
mization systems that previous frameworks cannot address and
introduce protective optimization technologies (POTs) as a solution.
While this work represents a steady step forward in addressing the
problems that arise from automation, many research questions re-
main open: What are further externalities of optimization? Can we
design POTs to address them? Does our framework cover the design
space of all possible POTs? What are non-technical approaches that
can complement POTs (e.g., taxation)? Do POTs have other uses?
E.g., can they support ongoing efforts to promote safety in automa-
tion or become useful not only post-deployment, but also to prevent
the introduction of optimization systems in certain domains?

We believe that answering such questions requires an interdis-
ciplinary approach that involves engagement with affected com-
munities, policy and other academic disciplines. We hope that our
work inspires the exploration of new avenues of research towards
developing strong mechanisms to counter the negative effects of
optimization in our society.
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